Competitive inhibition of the luminal efflux by multidrug and toxin extrusions, but not basolateral uptake by organic cation transporter 2, is the likely mechanism underlying the pharmacokinetic drug-drug interactions caused by cimetidine in the kidney.

نویسندگان

  • Sumito Ito
  • Hiroyuki Kusuhara
  • Miyu Yokochi
  • Junko Toyoshima
  • Katsuhisa Inoue
  • Hiroaki Yuasa
  • Yuichi Sugiyama
چکیده

Cimetidine, an H₂ receptor antagonist, has been used to investigate the tubular secretion of organic cations in human kidney. We report a systematic comprehensive analysis of the inhibition potency of cimetidine for the influx and efflux transporters of organic cations [human organic cation transporter 1 (hOCT1) and hOCT2 and human multidrug and toxin extrusion 1 (hMATE1) and hMATE2-K, respectively]. Inhibition constants (K(i)) of cimetidine were determined by using five substrates [tetraethylammonium (TEA), metformin, 1-methyl-4-phenylpyridinium, 4-(4-(dimethylamino)styryl)-N-methylpyridinium, and m-iodobenzylguanidine]. They were 95 to 146 μM for hOCT2, providing at most 10% inhibition based on its clinically reported plasma unbound concentrations (3.6-7.8 μM). In contrast, cimetidine is a potent inhibitor of MATE1 and MATE2-K with K(i) values (μM) of 1.1 to 3.8 and 2.1 to 6.9, respectively. The same tendency was observed for mouse Oct1 (mOct1), mOct2, and mouse Mate1. Cimetidine showed a negligible effect on the uptake of metformin by mouse kidney slices at 20 μM. Cimetidine was administered to mice by a constant infusion to achieve a plasma unbound concentration of 21.6 μM to examine its effect on the renal disposition of Mate1 probes (metformin, TEA, and cephalexin) in vivo. The kidney- and liver-to-plasma ratios of metformin both were increased 2.4-fold by cimetidine, whereas the renal clearance was not changed. Cimetidine also increased the kidney-to-plasma ratio of TEA and cephalexin 8.0- and 3.3-fold compared with a control and decreased the renal clearance from 49 to 23 and 11 to 6.6 ml/min/kg, respectively. These results suggest that the inhibition of MATEs, but not OCT2, is a likely mechanism underlying the drug-drug interactions with cimetidine in renal elimination.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The inhibition of human multidrug and toxin extrusion 1 is involved in the drug-drug interaction caused by cimetidine.

Cimetidine is known to cause drug-drug interactions (DDIs) with organic cations in the kidney, and a previous clinical study showed that coadministration of cimetidine or probenecid with fexofenadine (FEX) decreased its renal clearance. FEX was taken up into human kidney by human organic anion transporter (hOAT) 3 (SLC22A8), but the mechanism of its luminal efflux has not been clarified. The pr...

متن کامل

Mechanistic in vitro studies confirm that inhibition of the renal apical efflux transporter multidrug and toxin extrusion (MATE) 1, and not altered absorption, underlies the increased metformin exposure observed in clinical interactions with cimetidine, trimethoprim or pyrimethamine

Metformin is a common co-medication for many diseases and the victim of clinical drug-drug interactions (DDIs) perpetrated by cimetidine, trimethoprim and pyrimethamine, resulting in decreased active renal clearance due to inhibition of organic cation transport proteins and increased plasma exposure of metformin. To understand whether area under the plasma concentration-time curve (AUC) increas...

متن کامل

Involvement of human multidrug and toxin extrusion 1 in the drug interaction between cimetidine and metformin in renal epithelial cells.

In human proximal tubules, organic cations are taken up from blood into cells by human organic cation transporter 2 [hOCT2/solute carrier (SLC) 22A2] and then eliminated into the lumen by apical H(+)/organic cation antiporters, human multidrug and toxin extrusion 1 (hMATE1/SLC47A1) and hMATE2-K (SLC47A2). To evaluate drug interactions of cationic drugs in the secretion process, epithelial cells...

متن کامل

Altered pharmacokinetics of cimetidine caused by down-regulation of renal rat organic cation transporter 2 (rOCT2) after liver ischemia-reperfusion injury.

The renal tubular secretion of cationic drugs is dominated by basolateral organic cation transporter 2 (rOCT2/SLC22A2) and luminal multidrug and toxin extrusion 1 (rMATE1/SLC47A1). Little is known about the variation in the expression of these renal transporters after liver ischemia-reperfusion (I/R) injury. Here, we examined the pharmacokinetics of a cationic drug, cimetidine, and renal rOCT2 ...

متن کامل

Renal tubular secretion of tanshinol: molecular mechanisms, impact on its systemic exposure, and propensity for dose-related nephrotoxicity and for renal herb-drug interactions.

Tanshinol has desirable antianginal and pharmacokinetic properties and is a key compound of Salvia miltiorrhiza roots (Danshen). It is extensively cleared by renal excretion. This study was designed to elucidate the mechanism underlying renal tubular secretion of tanshinol and to compare different ways to manipulate systemic exposure to the compound. Cellular uptake of tanshinol was mediated by...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of pharmacology and experimental therapeutics

دوره 340 2  شماره 

صفحات  -

تاریخ انتشار 2012